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Abstract. Modelling of the properties of high-spin isotopomers, as polyhedra- on-lattice-points which
yield various symbolic-computational Sn-encodings of nuclear permutation (upto some specific SU(m)
branching level), is important in deriving the spin-ensemble weightings of clusters, or cage-molecules. The
mathematical determinacies of these, obtained here for higher m-valued SU(m) × S12 ↓ I group embed-
dings, are compared with that of an established group embedding, in order to collate the spin physics
of [11BH]

2−
12 (SU(2(m ≤ 4))× S12 ↓ I) with that for [10BH]2−12 (SU(m ≤ 7) × ..)-analogue. The most sym-

metrical form of [(10BH) (11BH)]2−6 ((S6 ⊗ S6) ↓ (S3 ⊗ S3)) anion provides a pertinent example of the
SU(m > n) × Sn ↓ G physics discussed in [10]. Retention of determinacy in the two S12 ↓ I cases is
correlated to the completeness of the 1:1 bijective maps for natural embeddings of automorphic dual group
NMR spin symmetries. The Kostka transformational coefficients of a suitable model (Sn module, Schur
fn.) play a important role. Our findings demonstrate that determinacy persists (to SU(m ∼ n/2) × Sn
branching levels) more readily for embeddings derived from (automorphic) finite groups dominated by
odd-permutational class algebras, such as the above S12 ↓ I, or the SU(m ≤ 3) × S6 ↓ D3 case discussed
in [16a,15,3d], compared to other examples – (e.g. as respectively, in press, and in [17b]): SU(m)×S8 ↓ D4,
SU(m)× S10 ↓ D5. Generality of the symbolic algorithmic difference approach is stressed throughout and
the corresponding dodecahedral SU(m)× S20 ↓ I maps are outlined briefly – for the wider applicability of
SF-difference mappings, or of comparable Sn-symbolic methods, (e.g.) via [7].

PACS. 02.10.-v Logic, set theory, and algebra – 33.20.Vq Vibration rotation analysis –
36.40.Mr Spectroscopy and geometrical structure of clusters – 33.25.+k Nuclear resonance and relaxation

1 Introduction

The search for physical insight into nuclear identical-
spin ensemble properties of automorphic dual group spin
symmetries, such as the ro-vibrational(R-V) weighting in-
herent in (exclusive) isotopomeric clusters, begins by con-
sidering the role of Cayley’s theorem [1] for (automorphic)
finite-group natural embeddings in specific symmetric
groups. This has a strong inherent theoretical association
with the regular-polyhedral lattice-point structure [2,3]
which governs nuclear permutation. Physical insight
into the latter is governed by the contention (due to
Balasubramanian [4] in the early 1980s) that nu-
clear spin symmetry constitutes an automorphic (dual
group) symmetry. On the basis of appropriate (rota-
tional/permutational) finite group algebras, the spin
symmetry is related to the specific hierarchical {Jij}-
subset structure of the spin-spin interactions in NMR.
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In the present work, spin symmetry is applied to higher-
spin isotopomers in order to understand spin-ensemble
weighting (via the complete nuclear permutations(CNP))
of R-V spectra, and also the determinacy question
for natural group-embeddings involving the icosahedral
group [3,5]. The latter Sn ↓ I natural subduction has
been examined via certain established Sn algorithms of
symbolic computing [6,7], in the context of Sn-group rep-
resentational theory [8,9].

From Casimir-invariant studies [10] on S6 ↓ S3-
related NMR spin systems, Sullivan and Siddall-III deduce
– irrespective of both the Cayleyan criterion [1,3] and
the intermediate SU(m ≤ n) × Sn ↓ G embedding
determinacy – that at the highest branching levels,
represented by SU(m > n) × Sn ↓ G, retention of
determinacy is no longer possible. This result is clearly
consistent with a symbolic mathematical (λ ` n par-
titional) viewpoint [11], where the use of m-branching
levels greater than 1n, for permutational index-n, im-
plies the introduction of degeneracy. Physical insight into
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the intermediate 3 ≤ m ≤ n SU branching as-
pects of natural embeddings [5] have attracted recent
attention for their importance in nuclear spin weight-
ing constraints, i.e., via spin algebras, imparted to R-
V spectroscopic investigations of cage-molecules [12–14]
and symmetrical clusters. The importance of natu-
ral finite group-embedding in molecular spectroscopy
was first recognised in the work of Galbraith and
Cantrell [12]. As a property of nuclear spin ensembles,
the topic subsequently has become of wider spectro-
scopic significance [13–19]. Recent interest in an ever-
increasing range of clusters, each with a potential wealth
of (exclusive single-isotope based) isotopomers [14,18],
has given a greater cogency to the topic.

Here, we shall focus on the automorphic nuclear
spin symmetries of exclusive single-isotope [A]n.. systems
which govern the weight-constraints imparted to R-V
spectra. Thus for all such fermion (boson) isotopomeric
[A]n(Sn ↓ G) systems, the constraint that:

Γ (SU(m)× Sn ↓ G : nucl. spin)× Γ 3space;R−V ≡ A2 (1)

|as [A]n a fermion (boson) system},

determines the spin-ensemble weighting. Since the icosa-
hedral group embedded into SU(m)×S12 (20,60) may well
exhibit contrasting mathematical determinacies accord-
ing to both their (permutational) type, or to the (λ `
n) SU(m) -branching level associated with its embedding,
the CNP properties, and (equally) the NMR automorphic
spin symmetries [10], are of definite physical and mathe-
matical interest.

A number of theoretical considerations related to
polyhedral lattice vertex-point modelling of nuclear spin
symmetries [15–18] are invaluable for the physical and con-
ceptual insight they provide – i.e., irrespective of whether
one is considering Cayleyan type embeddings [15], or
highly λ ` n-branched non-Cayleyan forms. For further
details of the nature of Sn symbolic computational al-
gorithmic (SCA) modelling applied to the original (but
much more limited) SU(2 ≤ m < 5) × Sn ↓ I processes
(of Eqs. (24-32) below) which define the spin-3/2 contain-
ing [11BH]2−12 anion, the reader is referred to various fuller
discussions and tabulations, given in earlier works [3,5] of
ours. The corresponding [10B]2−12 anion is of interest from
the extended level of partitional branching it imparts to
the dual automorphic group. The present work sets out the
most general branched SU(m) × S12 ↓ I forms and their
weights, in the context of the earlier SU(m ≤ 3)×S6 ↓ D3

(Cayleyan) case and in contrast to the dominant even
permutational-cycle embedded groups, such as S8 ↓ D4.

2 Discussion: Group-based relationships via
combinatorics: A general role for {4Λ:;�0}
Kostka-based difference maps: hierarchical
(maximal) set properties under Sn ↓ G

Prior to discussing more explicit aspects of group embed-
ding, it is necessary first to make some general remarks

and give a summary of certain “algorithmic-generators”
properties of symbolic Sn encoding. For reasons asso-
ciated with the convergence of the (decompositional)
coefficients to their standard maximal weak-branching val-
ues in the systemic forms of such sets, and in particular
for the convenient difference mapping relationships over
a minimal number of non-vanishing terms, it is advanta-
geous to proceed via a Young’s third-rule approach [5,6].
This is one choice, rather than (e.g.), utilising inner ten-
sors to recursively generate the comparative algebras on
the Sn and the subduced group spaces. The less regular,
highly non-simple-reducible nature of reduction coefficient
decompositional sets of the inner tensors (ITPs) [6,9], as
obtained (e.g.) via multiple Littlewood-Richardson (L-R)
rule applications for 12 ≤ n ≤ 18 cases, mitigates against
their use here as generators in the general higher-branched
(λ ` n) cases. The fact of their slower convergence to
a maximal reduction coefficient set, even for modestly
branched bipartite forms, somewhat impedes their use as
“combinatorial-generators” of parallel full and subduced
symmetry relationships in the more general case. In other
(subsequently derived) work, we discussed the origins and
occurrence of maximal sets for ITPs associated with
higher index-n ∼ 20 fold symmetric groups as compared to
the level of bipartite irrep λ ` n branching. Here, the value
of the SYMMETRICA symbolic computing package [7] in
studies involving generators (i.e., beyond known general
⊗[n− 1, 1] forms) will be noted.

In the earlier work [5] on the SU(m ≤ 4) × S12 ↓ I
forms of embedding arising from [19,20] [A]12(S12 ↓ I)
identical spin ensembles of proton, deuteron, or 11B, as
(Ii ≤ 3/2)-NMR nuclei of 12-fold cage clusters, we utilised
equivalent procedures (i.e. as formulated by Sagan [6]) to
those of symbolic algorithmic (SC) computing of Kohnert
et al. [7]. These are concerned with simple group mod-
ules, or their analogous Schur functions (fns.) (SFs) of
an appropriate multipartite form characterised by their
corresponding monomial cardinality. These entities owe
much of their subduced/restricted space properties to such
spin ensembles being viewed as vertex lattice-point net-
works, after the Erdös et al. [2]. Such a viewpoint of Sn-
encoding properties is especially helpful for the Cayleyan
(or closely-related) forms based on D3(5),O, I (automor-
phic) groups. Only for the SU2×Sn cases are the encodings
directly physical correlations, rather than mathematical
quantities (i.e., SFs) into which the latter are subsumed.
In such structures, it follows that the module- or Schur
fn. models themselves provide physical insight via their
decomposition properties over L† ≡ {[λ]} set – from ini-
tial component irrep [n] down towards λSA in dominance
order. Such properties of modules (SFs) are implicit in
the third variant of Young’s rule [6,7] (YR-III). Hence via
well-established enumeration techniques, one obtains:

λ→
(enm.)⊕
λ′

Λλ,λ′ [λ′], (1)

on the basis of semi-normal standard tableaux (sst), where
the unprimed and primed λs refer respectively to the
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contents and the shape tableaux properties. The Kostka
coefficients Λλ,λ′ , or Kλ,λ′ (both the latter, and the forms
on the right of following equation, are given in Sagan’s no-
tation [6]) are clearly:

Λλ,λ′ ≡ (sst)λ
′
(λ). (2)

Beyond the tabulated relationships given in the earlier
(i.e. SU(m ≤ 4)×-based) work, it is physically insightful
to invoke hierarchical difference “combinatorial genera-
tors” based on the YR-III rule For the symmetric group
from n = 10 to n = 20 (and upwards) the full power
of these relationships is seen on recognising the occur-
rence of maximal subsets of Kostka coefficients associated
specifically with lower (weak) λ ` n branching, which for
higher indiced Sn groups are independent of n. Other re-
duction coefficient sets for sufficiently high-indexed sym-
metric groups have been shown to exhibit similar maximal
subsets, provided one is concerned specifically with weak
λ ` n branching:

Λ
(max′l)
λ,λ′ ≡ {(sst)λ′(λ)}(weak λ`n). (3)

Specific indexed Sn group-module decompositions in
themselves are still valuable, but the maximal subsets
for high n and weak λ ` n branchings (WBs) are par-
ticularly convenient aspect of YR-III decompositions to
utilise in applications. To summarise the (WB) meth-
ods (based on both decompositional forms) used here on
the basis of the earlier work [3–5], we give the following
totally general “combinatorial generators” for symmet-
ric group/subgroup properties in general, namely ∀n ≥
2(µ + µ′) – here with µ′ being the other integer (sum of
such integers) of the lefthand “ parts-of-n”, or first of the
righthand SFs (or modules), below:

[n− (µ+ 1), µ1]⇔ { ̂n− (µ+ 1), µ1}
− { ̂n− µ, µ− 1, 1} − [n− (µ+ 1), µ+ 1]− [n− µ, µ],

for µ ≥ 2, (4)

[n− (µ+ 2), µ2]⇔ { ̂n− (µ+ 2), µ2}

−{ ̂n−(µ+2), µ+1, 1}−[n−µ−1, µ, 1]−[n−µ, µ],
for 2 ≤ µ, (5)

[n− (µ+ 3), µ3]⇔ { ̂n− (µ+ 3), µ3}

− { ̂n− (µ+ 3), µ+ 1, 2} − [n− (µ+ 2), µ2)]
− [., (µ− 1)3]− [n− µ− 1, µ1]− [., (µ− 1)2]
− ([., (µ− 2)3])− [n− µ, µ]− [., (µ− 1)1]
− ([., (µ− 2)2])− [n− µ+ 1, (µ− 1)]
− ([., (µ− 2)1])− ([., µ− 2]),

for µ ∼ 4, or with extra terms (5), (6)

[n− (µ+ 2), µ11]⇔ { ̂n− µ− 2, µ11}

− { ̂n− (µ+ 1), µ− 1, 11} − 1[n− (µ+ 2), µ+ 2]
− 2[., (µ+ 1), 1]− [., µ2]− 2[n− (µ+ 1), (µ+ 1)]
− 2[., µ1]− [n− µ, µ],

for µ ≥ 2, (7)

within their respective decompositional coefficients under
Young’s rule, as in the specific maximal Kostka set of
weakly-branched {Λi,i′}maxl.s (as e.g., under S12≤n(∼20)).
Hence, 2Σµ,µ′ ≤ n of λ ∼ n − Σµµ′ (partition) over an
implied dimensionality balance yields:

[n− 3, 21] ≡ { ̂n− 3, 21} − { ̂n− 2, 11}
− [n− 3, 3]− [n− 2, 2], (8)

[n− 4, 31] ≡ { ̂n− 4, 31} − { ̂n− 3, 21}
− [n− 4, 4]− [n− 3, 3], (9)

[n− 5, 41] ≡ { ̂n− 5, 41} − { ̂n− 4, 31}
− [n− 5, 5]− [n− 4, 4], (10)

[n− 4, 22] ≡ { ̂n− 4, 22} − { ̂n− 4, 31}
− [n− 3, 21]− [n− 2, 2], (11)

[n− 5, 32] ≡ { ̂n− 5, 32} − { ̂n− 5, 41}
− [n− 4, 31]− [., 22]− [n− 3, 3]
− [n− 3, 21]− [n− 2, 2], (12)

[n− 6, 33] ≡ { ̂n− 6, 33} − { ̂n− 6, 42}
− [n− 5, 5]− [., 41]− [n− 4, 31]
− [n− 3, 21]− [n− 2, 2],

where /[λ]left/,4SFs,Σ[λ]right : (13)

/[λ]left/(S12)→ {320; 891; 1408; 616; 1925; 1650},
as sets over equations (8-13) above,

/4(SF )s/→ {528; 1320; 1980; 990; 3960; 4620},
so necessarily,

Σ[λ]right → {208; 429; 572; 374; 2035; 2970}; (14)

[n− 4, 211] ≡ { ̂n− 4, 211} − { ̂n− 3, 111}
− [n− 4, 4]− 2[., 31]− [., 22]
− 2[n− 3, 3]− 2[., 21]− [n− 2, 2], (15)

[n− 5, 311] ≡ { ̂n− 5, 311} − { ̂n− 4, 211}
− [n− 5, 5]− 2[., 41]− [., 32]
− 2[n− 4, 4]− 2[., 31]− [n− 3, 3], (16)

[n− 5, 221] ≡ { ̂n− 5, 221} − { ̂n− 5, 311}
− [n− 5, 32]− [n− 4, 31]− 2[., 22]
− [., 211]− [n− 3, 3]
− 2[., 21]− [n− 2, 2], (17)

where now the cardinalities of these final three dif-
ferences SFs, 4(SF ) span: {4620, 9900, 7920}(S12);
({51300, 251940, 155040}(S20)). These accord with the de-
tailed balance of the known cardinalities of the χ[λ]

1n char-
acters (and monomials), given in references [5,9b].

Naturally, these and further specific forms for both low
and general partitional branching are open to confirmation
from matching of decompositional processes available in
the SYMMETRICA symbol computing package [7]. Fur-
ther details for n = 12, n = 20 specific symmetric groups
(beyond Refs. [5,11]) in intermediate- and high (λ ` n)-
branching regimes will be found in Appendices A1, A2.
As a contrasting alternative view (for completeness), we
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give some of the simpler decompositional mappings based
on (bipart) inner tensorial product maximal reduction co-
efficient sets, which naturally have more component coef-
ficients and converge more slowly to to the maximal sets
of n-independent YR-III forms. Thus one finds that:

[n− µ− 1, µ1] −→ ([n− 1, 1]⊗ [n− µ, µ])
− [n− µ+ 1, µ− 1]− [n− µ, µ]
− [n− µ, µ− 1, 1]− [n− µ− 1, µ+ 1],

for µ ≤ (n/2− 1), (18)

[n− 4, 22] −→ ([n− 2, 2]⊗ [n− 2, 2])
− [n− 4, 4]− [., 31]
− [n− 3, 3]− 2[., 21]− [., 111]
− 2[n− 2, 2]− [., 11]− [n− 1, 1]− [n],

for 2 ≤ ((n/2)− 2), (19)

[n− 3, 111] −→ ([n− 2, 11]⊗ [n− 1, 1])
− [n− 3, 21]− [n− 2, 2]− [., 11]
− [n− 1, 1], for 3 ≤ ((n/2)− 3),

else generally, (20)

[n− µ− 2, µ11] −→ ([n− 2, 11]⊗ [n− µ, µ])
− [n− µ− 2, (µ+ 1), 1]− [n− µ− 1, (µ+ 1)]
− 2[., µ1]− [., (µ− 1)2]− [n− µ− 1, (µ− 1)11]
− [n− µ, µ]− 2[., (µ− 1)1]
− [., (µ− 2)11]− [n− µ+ 1, µ− 1]− [., (µ− 2)1],

for 2 < µ < ((n/2)− 2). (21)

Simple tractable ITP decompositional difference relation-
ships (i.e. over a conveniently restricted number of terms,
i.e., close to simple-reducibility (SR)) are more limited
however under (multiple) L-R processes, as simple well-
ordered development over a set of minimal-valued reduc-
tion coefficients is not a general characteristic of even
bipartite ITP decompositions, though at high-enough n-
index values a maximal (vs. n) set of reduction coefficients
will exist. This arises from the comparability of the Young
and L-R rules, highlighted by Sagan [6]. In order to stress
the generality of the “combinatorial-generator” approach
(especially in respect of these higher index-n and stan-
dard maximal coefficient subsets), the appendix material
sets out some analogous initial S20 ↓ I subductions, based
on generator equations (4-16; 18-20).

Finally in this section, we stress the bi-directionality
of mappings under SU(m) × Sn or .. × Sn ↓ G (dual
groups) associated with λ ` n modelling and algebraic
combinatorics. Aside from specific properties arising from
higher spin or SU(m ≥ 3) × .. aspects of these algebras,
in general the automorphisms between point groups and
spin symmetries with the involvement of some interme-
diate combinatorial-based mappings constitutes a closed
cyclic form, in principle; thus, it may utilised to establish
a purely group theoretical relationship. That this is so is
a consequence of the general bi-directionality of automor-
phisms. It establishes and justifies the role of “group the-
ory via algorithmic algebraic combinatorics” as an equal

counterpart to Kerber’s (1991) overview [8] of “algebraic
combinatorics via finite group actions”.

2.1 Overview of additional SU(m ≥ 3)× Sn ↓ G
embedding criteria

On comparing the determinacy question for the SU(m ≤
6) × S6 ↓ D3 embedding system with that for the icosa-
hedral mappings in the context of [11B]12 or [10B]12
ensembles, such as those inherent in the SU(4)× and
SU(7)×S12 ↓ I permutational problems, it has been sug-
gested [15] that even where Cayley’s theorem applies, once
SU(m ≥ 3)× branchings are considered [16], it is only
a necessary condition. Hence, in mathematical physics
terms, it is no longer a sufficient general-criterion on its
own to apply beyond the SU(2)× Sn ↓ G level.

The completeness of strictly (1:1) bijective mapping for
natural subduction is an important indication of retained
determinacy, as it implies the existence of the requisite
number of independent relationships. For group structures
of the G non-icosahedral groups, such determinacy is in-
herently correlated to “self-associacy (SA) retention under
subduction”, a property typical of Yamanouchi chain of Sn
embedded groups. The latter are known for their univer-
sal determinacy, irrespective of the SU(m ≤ n) branching
level [15,16] associated with the Sn-irrep. As an example
of such (non-I ∼ A5) chain subduction properties with
SA retention, the following chain forms will suffice:

[321]SA(S6)→ {[32] + [311] + [221]}SA

→ 2{[31] + [22] + [211]}SA

→ 2{[3] + 3[21] + [13]}SA over, (22)

S6 ⊃ S5 ⊃ ... ⊃ S3...

We have suggested now that such a property applies to
non-I natural embeddings also, and that its occurence
is one sufficient criterion to guarantee determinacy for
such highly branched SU(m) × Sn ↓ (G(6≡ I)) (sub-
duced) algebras- corresponding to specific isotopomeric
clusters [16]. As a example one notes how the group chain
properties for the S6 ↓ D3 case develop over:

[51]
[42]
[411]
[33]
[321]

→


0 0 1 0 0
1 0 1 0 2
0 1 0 2 1
0 2 0 1 0
0 0 2 2 2

 (S6 ↓ O)→


0 1 2
3 0 3
1 3 3
0 3 1
2 2 6

 (S6 ↓ D3),

(23)

as a natural subduction process, where the last rows corre-
spond to SA forms throughout the group embedding pro-
cess. Further the intermediate group O here is related
directly to the final Cayleyan-embedded form via an in-
duced symmetry group relationship, a question discussed
in Section 5 (below).
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On questions arising from the algebras of group em-
bedding, we would just stress that:
i) mathematical determinacy simply implies a freedom
from degeneracies, or alternatively simple multiples, in
the mappings arising from natural subduction processes,
whereas,
ii) retention of determinacy to SU(m ≤ n) branching
level (or self-associacy (retention) for non-I groups) im-
plies that a process involves a complete set of independent
relationships upto SU(n/2) level, and thereafter is gov-
erned simply by properties derived from ⊗1n irrep (inner
product) multiplication. Naturally, the latter is an inher-
ent part of Sn group structure. As a sequal to the above,
there is one further underlying question of interest to those
readers with specific group theoretical interests. Namely,
“is it only odd-permutational cycle/class-structured finite
groups which allow for determinate embedding right upto
the m = n limit, as identified in reference [15] with the
S6 ↓ (D3 ≡ S3) case?” A further point we shall return to
in a later section. Finally, we stress the notation adopted
here in all the natural subductions and mappings: i.e.,
Γ̀ (as a final right-hand term) is a (unit) column-vector,
as in references [3,5] with the standard form [20] for the
icosahedral group being: Γ̀ (I)† ≡ {A,G,H, T1, T3}.

2.2 Symbolic Sn-encodings for Sn ↓ I maps via
“combinatorial generators”

The study of various appropriate (multicoloured) regular-
polyhedral lattices provide the basis for the following
incremental-m SU(m) sets of bijective mappings – from
reference [5] (omitting much of the detail), within the no-
tation given therein:

[11, 1]⇐⇒ {−,−, 1, 1, 1}Γ̀(SU(2)× S12 ↓ I), ..

[6, 6]⇐⇒ {10, 10, 14, 2, 2}Γ̀, (24)

where clearly this is not a Cayley-embedded form, such
as described elsewhere [3] for SU(2)×S60 ↓ I. Additional
features for the twelve-fold deuteron spin-one cluster arise
from mapping such as:

[10, 11]⇐⇒ {0, 4, 3, 4, 4}Γ̀(SU(3)× S12 ↓ I), ..

[5, 43]⇐⇒ {35, 136, 183, 103, 103}Γ̀, (25)

[4, 44]⇐⇒ {17, 34, 39, 19, 19}Γ̀, (26)

where the χ[λ]
1n principal characters respectively span,

{11, {..}, 132}; {55, {..}, 2112, 462}. For the SU(4)×S12 ↓
I embeddings arising from the [11B]12 cluster, the
mappings take on the following forms, which includes
a typographic correction to [5, ...] ⇐⇒ {..}Γ̀ subset of

reference [5]:

[9, 13]⇐⇒ {5, 12, 14, 7, 7}Γ̀(SU(4)× S12 ↓ I), ..

[6, 23]⇐⇒ {43, 131, 166, 88, 88}Γ̀; and (27)

[5, 511]⇐⇒ {36, 99, 135, 63, 63}Γ̀, (28)

[5, 421]⇐⇒ {94, 387, 475, 293, 293}Γ̀, (29)

[5, 331]⇐⇒ {76, 278, 354, 200, 200}Γ̀, (30)

[5, 322]⇐⇒ {63, 297, 360, 234, 234}Γ̀, (31)

[4, 431]⇐⇒ {42, 198, 240, 156, 156}Γ̀, (32)

where now,

{χ[λ]
1n} ≡ {165, {..}; 1925, 1485, 5775, 4158, 4455, 2970},

(33)

with the (SU(4)× ..) final self-associate (SA) (dual-group)
irrep-mapping given as equation (43) below. After these
necessary preliminaries, we now turn to dual group higher
branchings and embeddings specifically associated with
the Ii = 3 boron-10 component spin-ensemble of the boro-
hydride anion.

3 Completeness of (SU(m ≤ (n/2))×
Sn=12 ↓ I)-dual-group bijective maps

Both the above and the higher SU(m) × .. map-
pings were obtained using (recursive) hierarchi-
cal encoding techniques of references [5,6,11].
These are simply based on projective decom-
positions and use of the standard Young’s rule
[6,7] to give the Kostka, or reduction, coefficients
[6,8,9,11] for the non-SU(2)× S12-modules (SFs), which
yield models for the higher-spin isotopomers. Beyond
the SU(4) × S12 ↓ I subset of mappings, with their
pertinence to the [11B]12 isotopomeric cluster given
earlier [5], one needs to arrive at all the strictly bijective
mappings in dominance order (from n (= 12)) prior to
(and including), (or, �[λSA]s in mathematical terms)
the further self-associate Sn irreps [6214] and [53211]
to give a complete-enough picture to understand the
SU(7) × S12 ↓ I determinacy question for the regular
[10B]12 cluster, as a polyhedral point-lattice network [2].
It is this aspect of the 10B-borohydride (anionic) en-
semble, and its associated SU(5 ≤ m ≤ 7) × S12 ↓ I
algebras, which is the principal focus of this work. No
other comparable highly branched determinate dual-
group subduction algebras have been reported to date
for specific SU(3 � m ≤ (n/2)) × Sn�6 ↓ G natural
embeddings, despite some earlier investigations [17] of
..× Sn ↓ D(n/2) systems.

From the {Λλ,λ′} Kostka coefficient sets of further
higher-branched simple Sn-modules as lattice encod-
ings [2] over a sequence of SCA-difference enumerations
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(see Appendix), it follows that the SU(5).. subset spans:

[814]⇐⇒ {7, 21, 31, 14, 14}Γ̀(SU(5)× S12 ↓ I), (34)

[7213]⇐⇒ {28, 116, 144, 86, 86}Γ̀, (35)

[6313]⇐⇒ {65, 248, 307, 184, 184}Γ̀, (36)

[62211]⇐⇒ {50, 238, 288, 187, 187}Γ̀, (37)

[5413]⇐⇒ {59, 232, 299, 173, 173}Γ̀, (38)

and the one remaining SA-irrep mappings accords with
equation (42) below. In these newly-reported SU(5)-
branched mappings, the principal characters now span the
following (5-fold) subset:

χ
[λ]
112 → {330, 1728, 3696, 3564, 3520}. (39)

For the SU(6) branchings, the only two dual-group irrep
mappings possible are:

[715]⇐⇒ {7, 31, 35, 26, 26}Γ̀, (40)

of cardinality 462, and the first of the SA-irrep mapping,
equation (41) below.

What is striking about the complete sets of mappings
is their strictly 1:1 bijective quality down to λSA ` n.
This property of the mappings is retained in this specific
S12 ↓ I case irrespective of the branching depth. This is
a new and strongly physics-related property. Its impor-
tance arises from the fact that it implies a strict inde-
pendence of the complete set of relationships contained
over all the above SU(2)-SU(6) subset mappings, and thus
of the complete algebra. The occurence here of a series of
(new) prime numbers as coefficients for the resultant icosa-
hedral irreducible representations (irreps) serves to stress
the strong virtues of odd-permutational class-operator al-
gebras, in the context of 1:1 bijective mapping. Hence
finally, the extended hierarchical calculations via 4Λ.,λ′
relationships (i.e., beyond those of Ref. [5]) yield:

[6, 214]SA ⇐⇒ {41, 138, 185, 97, 97}Γ̀, (41)

[5, 3211]SA ⇐⇒ {129, 508, 653, 379, 379}Γ̀, and (42)

[4, 422]SA ⇐⇒ {65, 174, 245, 109, 109}Γ̀, (43)

whose respective S12 group characters are simply:

{χ[λ]
112} = {3564, 7700, 2640}. (44)

These final additions to the 1:1 mappings yield the com-
plete subduced algebras to SU(m = n/2) × .. forms,
and thus implicitly up to the Sullivan and Siddall(-III)
limit [10] form, SU(m = n)× Sn ↓ I.

All the SU(n/2 ≤ m < n) branchings beyond [4422]SA

are defined inherently now via the structure of the Sn
group itself predictably as “involutions about” its self-
associate irrep subset. Hence the specific SU(7)×S12 ↓ I
results naturally span the following subset (i.e., starting
from forms based on the results given in Eqs. (40, 35)

above):

[616]⇐⇒ [112]⊗ [715],

[5215]⇐⇒ [112]⊗ [7213], (45)

[4315]⇐⇒ {32, 139, 171, 106, 106}Γ̀, (46)

[42214]⇐⇒ {46, 158, 204, 113, 113}Γ̀, (47)

[33214]⇐⇒ {27, 127, 158, 100, 100}Γ̀, (48)

where the last three cases come from 112 ⊗ [λ], for [λ] =
{[7221], [7311], [732]}, respectively).

Even for a twelve-fold identical Ii = 9/2 spin cluster
as a model over a point-lattice polyhedral network [2,3],
such ensembles still correspond to SU(m)-branching lev-
els below the maximally-determinate SU(m = 12)×S12 ↓ I
form. Thus they necessarily must be determinate, on the
basis of the number of independent relationships implicit
in the above 1:1 bijectivity already exhibited by the map-
ping. This itself is a consequence of the total lack of
degenerate, or simple multiple entries (of earlier compo-
nents), over the full SU(m ≤ 6 (= n/2)) × S12 ↓ I sets
of observed mappings, as derived via (suitably-ordered)
direct, or symbolic SCA-, techniques. A further explicit
weighting, now involving modules (SFs) distributed on
{|IM〉} space, as in Tables 1, 2 of reference [5a] (for 12-
fold clusters of deuterons or 11B) (or as in an earlier spe-
cific discussion of these aspects [21]), is too lengthy to
setout here. For the full [µBH]12

2− anions the full total
(product) weights follows directly, on forming all possible
inner products between the Γ (SU(2)×S12 ↓ I) and ap-
propriate Γ (SU(m)×S12 ↓ I) results, discussed above. A
distribution of the SU(m)-partitional model forms as
monomial SFs (or Sn-modules) over {|IM〉}-space should
be included in the final weightings assigned to iso-
topomeric clusters. However, since the distribution of
monomial SF models on M(SO(2)) (of {|IM〉}) projec-
tive aspects are not strictly involved in the determinacy
question, they are not given explicitly here for brevity.

4 Some contrasts within [�=10B]12-related
spin ensembles

In addition to stressing the importance of strict bijec-
tive nature of the mapping, we now note that both the
[µB]12, (µ = 10, or µ = 11) (all identical nuclei) iso-
topomeric clusters yield totally determinate natural em-
beddings. In addition, it is of some spectroscopic interest
to point out on the specific basis of Sullivan and Siddall-III
earlier Casimir invariant study [10], that the (equimix) iso-
topomer [(10BH)(11BH)]6(⊗S6 ↓ (S3⊗S3)) -derived in one
sense from icosahedral symmetry as an enveloping group
for the 12-identical spin clusters-includes an indetermi-
nate embedding. This arises from the latter’s [10B]6 iso-
topomeric (partial) cluster. It is a direct consequence of its
SU(7)-branching now having m-values of SU(m)× S6 ↓ S3

greater than that of its symmetric group index, n. This oc-
curs despite the full range of all m ≤ n embeddings being
determinate forms of spectroscopic interest, i.e. associated
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with the S6 ↓ S3 mappings, as given in references [15,16].
The latter is of some interest, both in the context of the
classic work by Galbraith et al. [12,13] and of more recent
work on icosahedral cage forms [18–20,22–24].

Naturally, much of the recent interest in Sn ↓ I natu-
ral embedding has been driven by work on Cn fullerenes,
and (in particular) on their spectral and their struc-
tural (cage) properties. Interest in the 13Cn cage-clusters
and their RV weight properties dates from the work of
Balasubramanian [19,22] and from similar work [18] on
(alternative) [H(2H)12C]20 dodecahedranes – at present
restricted to the SU2(3) × Sn algebras. For an overview
of the correlation between the On orthogonal and Sn per-
mutational symmetries, the 3-space work of Butler and
King [25] and Wybourne’s use [26] of restricted space SFs
should be consulted. Similar concepts govern (e.g.) a more
recent work [27] of ours.

5 A role for induced symmetry
in determinacy problems

From the structure deduced here for the Sn ↓ I naturally
embedded algebras, it would appear that the icosahedral
group may be Sn-embedded in a determinate fashion right
up to the highest branching levels of physical interest,
SU(10)×S12, and that this may not be limited only to the
S12 ↓ I, since S60 ↓ I is a known Cayleyan determinate
embedding [3a, c, e, 22]. This is seen as a consequence of
both the structure of the lower group’s class algebra, in
generating prime-number subduction coefficients in such
processes, and the example corresponding to the m � n
Sullivan and Siddall criterion [10]. Both effects work in
favour of Sn ↓ I determinacy.

In the context of induced symmetry, the question arises
of whether a direct intermediate group to a Cayleyan em-
bedded subgroup plays a role in determinacy as in the
finite group chain:

S6 ⊃ O ⊃ D3, for /D3/ = 6, (49)

of equation (23) – as discussed in a wider context else-
where [28]. Whilst its ability to retain determinacy as a
guaranteed property is not proven in an analytic sense, as
a corollory to the chain properties the logic for its viability
appears irrefutable.

6 Concluding remarks

All of the above reinforces the view that the study of
nuclear spin effects on spectral properties via the dual
group and its multicolour (λ ` n) SF-like models yield
valuable physical insight into cage-cluster RV statistical
weighting problems, not otherwise accessible. Historical
parallels may be drawn with the role of recouplings includ-
ing spin momenta (and associated specific particle-type
statistics) in the early shell models of quantum physics
in several distinct fields from 1930s. Indeed, the use of
SFs in the former contexts for mapping onto restricted

group spaces is seen as part of a long (atomic) physics
tradition [25–27], now with applications in molecular
physics, e.g. in defining the structure of SU(2) × Sn ten-
sorial sets, which encompass Sn invariants [29,30] and
insightful inter-group co-operativity [31]. These aspects
are adjuncts to the form of carrier spaces for Liou-
ville space (super)boson mappings [32]. The presenta-
tion of this work has stressed the value, both of Kostka
decompositional reduction coefficient sets and of the
hierarchical difference properties of SF models, as gen-
erators in the physics of higher dual groups which are re-
lated to certain sets of identical spins of cage-isotopomers.
One notes that this example of m ∼ n SU(m) branch-
ing with higher indices for Sn ↓ I is of strong phys-
ical interest, comparable to the earlier S6 ↓ D3 case
set out in reference [10]. Certain wider generalities are
stressed. These include the need for additional criteria
for the determinacy of natural embeddings into specific
(higher unitary/ Sn) dual groups, for which parallels
with the universal determinacy of Yamanouchi group-
chains provide insight. Essentially, such guides would
resolve this conceptual question for all non-icosahedral
embeddings.

The author is grateful for encouragement with the topic
of combinatorics-in-physics from a number of theoretical
physicists and mathematicians, most notably Profs. K.
Balasubramanian, A. Kerber, and J.J. Sullivan; useful discus-
sions of fullerene structures with Profs. A. Ceulemans and P.W.
Fowler in the (Kath.-) University of Leuven are warmly ac-
knowledged. Finally, NSERC of Canada is thanked for its ini-
tial funding of the topic.

Appendix A: Generalised weak-branching
(high-index Sn�20 ↓ G) cases: role of {4Λ:;�0}
Kostka sets in recursive process

Earlier work (e.g. Tab. 1 of Ref. [5b], in contrast to specific
S12 mappings of Tab. 2 therein) has established the λ ` n
weak-branching limit for YR decompositions of SFs (or,
simple modules). It is this limit which enhances the gener-
ality of the application of recursive hierarchy-based gener-
ators from YR (or selective ITPs), such as those given as
equations (4-17; 18-20) in the text. Since an extended set
of such generalised YR decompositional mappings based
on 20 ∼ n ≤ 24 is incorporated into recent subsequent
work [27], it is not given explicitly here. Certain additional
group-embedding maps involving the I group are available
– on the basis these exhanced weaking-branching subsets
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of Kostka coefficients occurring at n ∼,≥ 20–, namely:

[16, 211] =⇒ {180, 765, 945, 585}Γ̀,
over {1145,−45, 0, 0, 0}C̆, (50)

[15, 32] =⇒ {915, 3705, 4620, 2790}Γ̀,
{55575,−45, 0, 0, 0}C̆, (51)

[14, 42] =⇒ {3811, 14921, 18732, 11114}Γ̀,
{223839, 315, 0, 4, 4}C̆, (52)

[14, 33] =⇒ {2041, 8412, 10411, 6371}Γ̀,
{125970,−290, 42, 0, 0}C̆, via ⊗ [n− 1, 1]

(53)

[12, 71] =⇒ {6276, 25194, 31470, 18918}Γ̀,
over {377910,−90, 0, 0, 0}C̆, (54)

[11, 81] =⇒ {6884, 27556, 34460, 20672}Γ̀,
{413440, 0,−20, 0, 0}C̆, (55)

[10, 91] =⇒ {4611, 18483, 23079, 13866}Γ̀,
{277134,−42, 15,−6,−6}C̆, (56)

where C̆† ∼ {C2, C3, C5, C5′} is the class vector and Γ̀ (I)
retains its earlier definition as a vector. These seven forms
extend the S20 ↓ I correlative mappings for this non-
Cayley group embedding beyond those to be found in ref-
erence [18].

Appendix B: Specific model decompositions-
on S12-irreps at intermediate branching

Here, we restrict the simple Sn=12 module (or SF) exam-
ples to those additional to the SU(m ≤ 4)-branched sets
of reduction coefficients given in Table 2 of reference [5],
so that the higher branched forms yield:

: 6313 : −→ {1476; 8, 11, 4; 7, 12, 5, 6, 1, 0;

4, 9, 6, 6, 2, 1, 0; 1, 3, 3, 3, 1, 2, 1, 00}L([λ′])
(57)

: 6222 : −→ {1363; 7, 8, 1; 6, 9, 6, 3, 0;
3, 6, 6, 3, 3, 0; 1, 2, 3, 1, 1, 2, 0, 1, 0}L (58)

: 5413 : −→ {1476; 8, 11, 4; 8, 12, 5, 6, 1; 7, 12, 6, 6, 2, 1;
3, 9, 6, 6, 1, 2, 1, 00; 3, 3, 1, 2, 1}L (59)

: 5322 : −→ {1363; 8, 8, 1; 8, 11, 6, 3, 0; 6, 10, 9, 4, 3;
2, 6, 7, 3, 3, 4, 0, 1, 0;
3, 1, 2, 2, 0, 1, 1}L (60)

: 53211 : −→ {1486; 11, 14, 4; 11, 17, 9, 9, 1;
8, 17, 14, 11, 6, 2; 4, 10, 11, 8, 6, 8, 2, 1, 1;
4, 3, 3, 4, 1, 2, 1, 1}L (61)

with the difference maps (of specific |4:λ:| cardinalities)
as single-digit Kostka reduction coefficient sets (omitting

comma separators), given by:

: 5413 :− : 6313 :, |4| = 55, 440 −→
{0000; 000; 10000; 330000; 26330000; 33121}L

(62)

: 5322 :− : 6222 :, |4′| = 83, 160 −→
{0000; 100; 22000; 343100; 14422200; 3122011}L

(63)

: 53211 :− : 5413 :, |4”| = 166, 320 −→
{0010; 330; 35430; 158541; 11525611; 10220211}L.

(64)

The specific symbolic algorithm for the third form of
Young’s rule has been setout in the text by Sagan [6], or
may be found as equation (5) of reference [3d]. The need
to proceed sequentially from the least λ ` n -branched
models in such difference decompositional mapping will
be clear from the above. The L† vectorial space of the S12

group may be shown to span the ordered set of {[λ’]} irreps
(omitting leading elements of the (regular) subsequences):

L†(S12) = {[12], [, 1], [, 2], [, 11]; [9, 3], [, 21],

[, 13]; [8, 4], [, 31], [, 22], [, 211], [, 14];

[7, 5], [, 41], [, 32], [, 311], [, 221], [, 213],

[15]; [6, 6], [51], [, 42], [, 411], [, 33], [, 321],

[, 313], [, 222], [, 2211], [, 214]SA, [, 16];
[5, 52], [5, 511], [5, 43], [5, 421],

[5, 331], [5, 322], [5, 3211]SA, [5, 314], [5, 2221], .;
[4, 44], [4, 431], [4, 422]SA}.

Much of the work reported here (with the exception of
Eqs. (6, 7, 21)) essentially pre-dates the author’s explicit
use of the Bayreuth Math. Inst.’s general Sn-symbolic
package, Symmetrica [7].
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